Exercise intensity effects on total sweat electrolyte losses and regional vs. whole-body sweat [Na+], [Cl-], and [K+]


February 2019

Newsletter Sign Up



To quantify total sweat electrolyte losses at two relative exercise intensities and determine the effect of workload on the relation between regional (REG) and whole body (WB) sweat electrolyte concentrations.


Eleven recreational athletes (7 men, 4 women; 71.5 ± 8.4 kg) completed two randomized trials cycling (30 °C, 44% rh) for 90 min at 45% (LOW) and 65% (MOD) of VO2max in a plastic isolation chamber to determine WB sweat [Na+] and [Cl-] using the washdown technique. REG sweat [Na+] and [Cl-] were measured at 11 REG sites using absorbent patches. Total sweat electrolyte losses were the product of WB sweat loss (WBSL) and WB sweat electrolyte concentrations.


WBSL (0.86 ± 0.15 vs. 1.27 ± 0.24 L), WB sweat [Na+] (32.6 ± 14.3 vs. 52.7 ± 14.6 mmol/L), WB sweat [Cl-] (29.8 ± 13.6 vs. 52.5 ± 15.6 mmol/L), total sweat Na+ loss (659 ± 340 vs. 1565 ± 590 mg), and total sweat Cl- loss (931 ± 494 vs. 2378 ± 853 mg) increased significantly (p < 0.05) from LOW to MOD. REG sweat [Na+] and [Cl-] increased from LOW to MOD at all sites except thigh and calf. Intensity had a significant effect on the regression model predicting WB from REG at the ventral wrist, lower back, thigh, and calf for sweat [Na+] and [Cl-].


Total sweat Na+ and Cl- losses increased by ~ 150% with increased exercise intensity. Regression equations can be used to predict WB sweat [Na+] and [Cl-] from some REG sites (e.g., dorsal forearm) irrespective of intensity (between 45 and 65% VO2max), but other sites (especially ventral wrist, lower back, thigh, and calf) require separate prediction equations accounting for workload.

Exercise Intensity Total Sweat Electrolyte Losses Infographic ACSM 2019

To download this Infographic - please click here

Eur J Appl Physiol (2019). 119:361-375.

GSSI Newsletter Sign up

Get the latest & greatest

All fields are required