COURSE CATALOG

Filter Courses

SSE 232: Exogenous Ketone Supplements as Ergogenic Aids in Athletic Performance: A New Dawn Fades?

The ketone bodies acetoacetate and β-hydroxybutyrate have wide-ranging metabolic and molecular effects on organs such as the brain, heart and skeletal muscle, some of which are suggestive of benefits to athletes in terms of performance and recovery. The recent development and increasing commercial availability of ingestible forms of ketone bodies as exogenous ketone supplements has amplified interest in these compounds. A variety of compounds classified as exogenous ketone supplements are now available and have been subject to several studies in exercise performance and recovery contexts in human participants. While there are mechanistic bases for potential beneficial effects of exogenous ketone supplements in various athletic contexts, most studies to date have failed to observe benefits to performance or recovery.

Reference Article

SSE 232: Exogenous Ketone Supplements as Ergogenic Aids in Athletic Performance: A New Dawn Fades?

Course Objectives

  • Discuss the differences between various exogenous ketone supplements in terms of form and effects on circulating ketone body concentrations 
  • Describe the potential mechanisms by which exogenous ketone supplements may improve or impair exercise performance 
  • Utilize the research to date on the effects of exogenous ketone supplements on exercise performance to guide athletes

Course

Credits

Course Expiration

ACSM

1

05/15/2026

BOC

1

05/15/2026

Commission on Dietetic Registration

1

03/31/2024

Reference Article

https://www.gssiweb.org/docs/default-source/sse-docs/sse_232_003.pdf?sfvrsn=2

SSE 228: Functional Ingredients to Support Active Women

There are important sex-based differences that exist between men and women that may influence nutrition and dietary supplement recommendations. The hormonal fluctuations throughout the menstrual cycle, and with oral contraceptives, result in metabolic alterations which should be considered when making supplement considerations for active women. Body composition and protein metabolism also change throughout a woman’s lifespan. This course will detail the scientific evidence related to sex-specific nutritional recommendations.

Reference Article

SSE 228: Functional Ingredients to Support Active Women

Course Objectives

  • Describe a typical menstrual cycle and potential metabolic alterations during the phases 
  • Discuss hormonal contraceptive use and the impact on the menstrual cycle 
  • Identify and describe dietary supplements that may be beneficial to active women

Course

Credits

Course Expiration

ACSM

1

05/15/2026

BOC

1

05/15/2026

Commission on Dietetic Registration

1

03/31/2024

Reference Article

https://www.gssiweb.org/docs/default-source/sse-docs/sse_228_004.pdf?sfvrsn=2

SSE 225: Beyond Caffeine for Mental Performance

In this course, Dr David Kennedy discusses caffeine from a research and real-world perspective. Caffeine, when taken alone in a research context, is associated with consistent ergogenic and psychological benefits, although within differing optimal dose ranges. In a real-world sport/exercise context, caffeine is often consumed alongside other bioactive compounds in the form of manufactured energy drinks or naturally occurring, plant-derived, caffeinated products. This SSE course explores the state of the research and where further exploration is needed.

Reference Article

SSE 225: Beyond Caffeine for Mental Performance

Course Objectives

  • Define caffeine and its’ mechanism of actions as it relates to psychological effects.
  • Differentiate the optimal dose of caffeine and functional benefits for enhanced psychological performance.
  • Translate the effects of other constituents that are often co-ingested with caffeine in the real world.

Course

Credits

Course Expiration

ACSM

1

02/06/2026

BOC

1

02/06/2026

Commission on Dietetic Registration

1

03/31/2024

Reference Article

https://www.gssiweb.org/docs/default-source/sse-docs/sse_225_a03.pdf?sfvrsn=2

Methods to Keep the Female Athlete Healthy: From Mental to Physical Health

While there is a disparity in sports performance research on female athletes, several experts in the field are making progress in furthering the understanding of the unique characteristics and needs of this population. From physiological and nutritional needs, to mental health and performance considerations, hear Dr Wendy Borlabi, Dr Trent Stellingwerff, Dr Abbie Smith-Ryan and Dr Sara Oikawa cover methods to keep the female athlete healthy. 

Reference Article

Methods to Keep the Female Athlete Healthy: From Mental to Physical Health

Course Objectives

  • Discuss how low energy availability (LEA) “exposure” does not always lead to Relative Energy Deficiency in Sport (REDs) and elements of the practical application of LEA to optimize health and performance.
  • Understand the initial data and known physiological differences that support evidence-based application for ingredients used by female athletes and discuss the possible implications.
  • Describe sex differences in skeletal muscle morphology and protein metabolism and identify gaps in the scientific literature related to female athlete specific protein research. 

Course

Credits

Course Expiration

ACSM

2.25

07/29/2025

BOC

2.25

07/29/2025

Commission on Dietetic Registration

2.25

05/31/2024

Reference Article

http://www.gssiweb.org/docs/default-source/educational-materials/webinar-handouts/acsm-2022-pre-con-handouts---all-files.pdf?sfvrsn=2

SSE #208: An update on beta-alanine supplementation for athletes

Fatigue during high intensity sports or activities (~1-10 minutes in length) is caused by several components with strong evidence that muscle acidosis via accumulating hydrogen ions is a key performance inhibitor.  To address this issue, skeletal muscle has intra and extracellular buffering mechanisms to attenuate exercise induced acidosis.  Carnosine is an intracellular buffer that is key in slowing the decline of muscle pH.  Carnosine has a nitrogen containing imidazole side ring which accepts or buffers hydrogen.  This buffering can contribute as much as 15% of total buffering capacity.  Additionally, carnosine has been shown to be a calcium/hydrogen exchanger, delivering calcium back to the sarcoplasmic reticulum and hydrogen away to the cell membrane.  This suggests that carnosine may increase calcium sensitivity and muscle contraction efficiency.  Plasma beta-alanine is the rate limiting substrate of carnosine.  Approximately 3-6 g/d of beta-alanine supplementation over at least four weeks can elevate muscle carnosine stores by 30-60%.  Several meta-analyses have been conducted and has shown 2-3% increased performance in non-elite athletes, followed with just 0.5-1% increased performance in elite athletes. 

Reference Article

SSE #208: An update on beta-alanine supplementation for athletes

Course Objectives

  • Utilize the information provided in this SSE to determine whether beta-alanine supplementation is right for your athlete and their training needs. 
  • Describe the mechanisms that carnosine buffers hydrogen and exchanges calcium/hydrogen. 
  • Discuss future applied research for beta-alanine and how else beta-alanine can be applied to non-elite and elite athletes.  

Course

Credits

Course Expiration

ACSM

1

06/24/2024

BOC

1

06/23/2024

Commission on Dietetic Registration

1

06/23/2024

CSCCa

1

06/23/2024

Reference Article

https://www.gssiweb.org/docs/default-source/sse-docs/stellingwerff_sse_208_a03.pdf?sfvrsn=2

SSE #203: Caffeine and Exercise Performance: an update

Caffeine is one of the most studied supplements and has shown ergogenic effects in almost every sport scenario it has been studied.  The benefits of ingesting moderate to high doses of caffeine (5-9 mg/kg of body mass) before and during exercise have been well established in endurance exercise.  Although the moderate to high doses of caffeine improves endurance performance, side effects such as gastrointestinal upset, nervousness, mental confusion, inability to focus and disturbed sleep have been reported.  Lower doses of caffeine (<3 mg/kg of body mass) have been shown to have similar performance benefits as the moderate to high doses, and without the side effects.  In addition to endurance performance, caffeine also improves performance in stop-and-go and team sports that require short-term, high intensity movements.  Caffeine seems to have an antagonistic interaction with adenosine receptors in the central and peripheral nervous system, which increases central drive and reduces the perception of fatigue and pain during exercise.  There is some variation between individuals in response to the effects of caffeine and it is unclear whether genetic polymorphisms can explain the inter-individual seen during caffeine administration. 

Reference Article

SSE #203: Caffeine and Exercise Performance: an update

Course Objectives

  • Utilize the available information on caffeine supplementation and exercise when considering adding caffeine into your athlete’s nutrition plan. 
  • Describe the mechanisms that caffeine effects the central and/or peripheral nervous system and how it improves exercise.
  • Discuss the possible genetic differences of individuals who do not respond or have very little responses to caffeine.   

Course

Credits

Course Expiration

ACSM

1

10/08/2023

BOC

1

10/08/2023

Commission on Dietetic Registration

1

10/08/2023

CSCCa

1

10/08/2023

Reference Article

https://www.gssiweb.org/docs/default-source/sse-docs/spriet_sse_203_a03_final.pdf?sfvrsn=2

Creatine: What Sports Health Practitioners Need to Know

Creatine supplementation has been considered a potential aid to athletic training and performance. This session will provide a review of the existing research surrounding creatine and scientific support for its use in athletic performance, adaptation and resistance training. The session will summarize its history, the effects of supplementation use on muscle creatine, brain metabolism and cognitive processing. Eric Rawson, Ph.D, FACSM, CSCS will also provide safe, practical uses for creatine and debunking its associated myths.  

 

Reference Article

Creatine: What Sports Health Practitioners Need to Know

Course Objectives

  • Describe the history of creatine research 
  • Explain the effects of creatine supplementation on muscle creatine, exercise performance, and adaptation to resistance training 
  • Describe the potential mechanisms that explain the performance enhancing effect of creatine supplementation 
  • Explain the safety of creatine supplementation as it relates to renal and muscle dysfunction 
  • Describe the effects of creatine supplementation on brain metabolism and cognitive processing 
  • Describe the potential benefits of creatine supplementation on mild traumatic brain injury 
  • Identify the myths associated with creatine supplementation 

 

Course

Credits

Course Expiration

ACSM

1

06/10/2023

BOC

1

06/10/2023

NSCA

0.2

06/10/2023

Commission on Dietetic Registration

1

06/10/2023

CSCCa

1

06/10/2023

Reference Article

http://www.gssiweb.org/docs/default-source/educational-materials/webinar-handouts/rawson_reference_list_a02.pdf?sfvrsn=2