

Lecture content provided by GSSI, a division of PepsiCo, Inc. Any opinions or scientific interpretations expressed in this presentation are those of the author and do not necessarily reflect the position or policy of PepsiCo, Inc.

OVERVIEW

- Physiological importance of hydration
- Effects of dehydration on performance
- Sweat rate estimation
- Fluid absorption and gastric emptying
- Hydration and rehydration recommendations

WATER

Waste excretion, blood volume & pressure regulation, transport of oxygen & nutrients, heat transfer

HYDRATE TO SUPPORT

- Cardiovascular function
- Body temperature regulation
- Performance

DEHYDRATION

Impairs the ability to remove heat

Leading to:

Cardiovascular strain
Increased glycogen use
Altered metabolic & CNS function
Decreased fluid absorption
Risk of heat illness

DEHYDRATION

Increases physiological strain

Can impair performance, especially in the heat

SWEATING

Cools the Body

FACTORS INFLUENCING SWEAT RATE

SWEAT RATE

Figure 1: Approximation of hourly sweat rates for runners at different paces and heat stress conditions (Sawka, 1992).

PHASES OF HYDRATION

FLUID INTAKE

THIRST & FLUID FACTORS

THIRST, HYDRATION & ADH

PLANNED VS DRINKING TO THIRST

Planned Drinking

Longer duration activities > 90 min
Particularly in the heat
High intensity
High sweat rates
When performance is a concern
When carbohydrate intake of 1 g/min

Drink to Thirst

Short duration activities < 60 to 90 min Cooler conditions Lower intensity

VOLUNTARY DEHYDRATION

Despite having access to cool palatable fluid, athletes typically dehydrate during exercise.

DRINKING & DEHYDRATION

Figure 2: Plot of average running speed of finishing time for 42 km against the magnitude of post-race hypohydration when drinking ad libitum (Cheuvront et al., 2007).

DEHYDRATION

Effects of progressive dehydration

SLOWER SPRINT SPEED AND FEWER SHOTS MADE AS LEVEL OF DEHYDRATION INCREASES

SWEAT RATE ESTIMATION

1 LB WEIGHT LOSS = 16 OZ OF SWEAT LOSS

WEIGHT LOSS + FLUID INTAKE

DURATION OF EXERCISE (HRS)

FLUID ABSORPTION

FACTORS IN GASTRIC EMPTYING

- Gastric volume
- Energy content
- Carbohydrate type
- Body position
- Dehydration
- Exercise intensity
- Beverage osmolality
- Beverage pH

IMPORTANCE OF ENERGY DENSITY

CARBOHYDRATE

When to Add Carbohydrate

If an athlete is training or competing for 60 minutes or longer with a performance goal.

Add 30-60 g/h carbohydrate, resulting in no more than a 6% solution (6% = 14 g/8 oz).

Choose quickly oxidized carbohydrates to provide energy and minimize GI upset.

INTESTINAL WATER ABSORPTION

INTESTINAL WATER ABSORPTION

PLASMA

FLUID DISTRUBUTION & RETENTION

FLUID & ELECTROLYTE DISTRIBUTION

SODIUM

CONSUMING SODIUM PROVIDES:

Better maintenance of blood sodium concentration

Better maintenance of plasma volume

SODIUM & FLUID RETENTION

BEVERAGE WITH SODIUM

- ♠ BLOOD OSMOLALITY
- ♠ BLOOD SODIUM
- REABSORPTION

WATER

- BLOOD OSMOLALITY
- ◆ BLOOD SODIUM
- **♥** REABSORPTION

FLUID VOLUME & REHYDRATION

- Replace up to 150% of fluid loss
- 20-24 oz / lb body weight
- Sodium critical for complete rehydration

REHYDRATION RECOMENDATIONS

REHYDRATION IS IMPORTANT...

During two-a-day practices

Throughout day-long competitions

After weigh-ins

REHYDRATION BEVERAGES

Phase of Rehydration

Beverage Component

Fluid Intake • Water

Fluid Absorption • Carbohydrate

Fluid Distribution • Sodium

Fluid Retention • Sodium

HYDRATION RECOMMENDATIONS

- Before: Drink ~5-7 mL/kg of fluids with sodium ~4 h prior and another 3-5 mL/kg ~2 h prior if athlete cannot urinate or the urine is dark
- During: Amount of fluid based on sweat rate
- After: 20-24 oz/lb lost

HOT TOPIC

Exercise Associated Muscle Cramps

- The cause and treatment of exerciseassociated muscle cramps (different from whole-body cramping) is not well understood
- Some cramps may be associated with disturbances of water and salt balance, but not all
- When water and salt losses are high, drinks containing electrolytes, especially sodium, should be used rather than plain water

PUTTING IT TOGETHER

American Football Example

KEY TAKEAWAYS

- ✓ Sweating cools the body, but dehydration impairs the ability to lose heat.
- ✓ Athletes should aim for no greater than 2% body weight loss during exercise.
- ✓ For exercise where performance is a goal, and in hot, humid environments, athletes should have a drinking plan based on their unique sweat profile.
- ✓ A small amount of carbohydrate (6%) does not delay gastric emptying of fluid and provides energy.
- ✓ Sodium helps retain fluid with proper distribution.

www.GSSIweb.org