

Lecture content provided by GSSI, a division of PepsiCo, Inc. Any opinions or scientific interpretations expressed in this presentation are those of the author and do not necessarily reflect the position or policy of PepsiCo, Inc.

OVERVIEW

- Review the importance of carbohydrates for athletes
- Structure and classifications
- Oxidation rates of different carbohydrates
- Absorption

INTRODUCTION TO CARBOHYDRATES

CARBOHYDRATE DEFINED

CARBOHYDRATE DEFINED

An organic compound made of carbon, hydrogen and oxygen.

A class of food that is rich in sugars, starches, or fibers.

An individual carbohydrate is classified as a sugar, starch, or fiber depending on the structure and number of glucose molecules.

Monosaccharides

Disaccharides

Polysaccharides

amylose

amylopectin

Maltodextrin

- Group of glucose polymers
- Produced from potato or corn starch
- Same oxidation rate as glucose and sucrose
- Common carbohydrate source in sports nutrition products

Glucose

Fructose

Galactose

Sucrose

Lactose

Maltose

Starch

- Amylose
- Amylopectin

Fiber

- Soluble
- Insoluble

INGESTED CARBOHYDRATE

Oral receptors in the mouth detected ingested carbohydrate, can improve exercise performance

Digestion to monosaccharides

Absorption via glucose & fructose transporters

Fuel for brain & muscle

Carbohydrates are often classified as "simple" and complex" based on their structures.

But, this *chemical* classification doesn't reflect the *physiology* of the carbohydrate in the body.

Rather than simple/complex, choice of carbohydrate for athletes during exercise should be based on oxidation rate, which is determined by absorption at the intestine.

CARBOHYDRATE STRUCTURE CLASSIFICATIONS

SIMPLE

COMPLEX

- Galactose
- Sucrose
- Maltose

Amylopectin

TYPES OF CARBOHYDRATES

FASTER

SLOWER

Rapid Absorption

1.0 g/min (60 g/h)

Slow Absorption

.06 g/min (35 g/h)

CARBOHYDRATE RECOMMENDATIONS

- ✓ When practicing or competing for an hour or longer
- ✓ Goal = Performance
- **✓** 30-60 g/h
- Easily digestible, quickly oxidized carbohydrate

OXIDATION

A faster rate of carbohydrate oxidation can result in a better performance

OXIDATION RATES DURING CYCLING

120 min @ 65% max 60 min rest 30 min @ 60% max

8% ¹³C-enriched glucose –or- galactose

8mL/kg pre 2 mL/kg every 15 min

INTESTINAL CARBOHYDRATE TRANSPORTERS

Intestinal wall has transporters for both glucose and fructose

Making use of both transporters increases carbohydrate absorption and oxidation

INTESTINAL CARBOHYDRATE TRANSPORTERS

Toll Booth Analogy

Think of the carbohydrate transporters each as a lane of a toll booth

The more toll lanes that are open, the faster the cars can move through

If less toll lanes are open for use, the cars can get backed up

FRUCTOSE + GLUCOSE COMBINATION

You don't need all "fast" sugars

Total CHO Oxidation (g/min)

MULTIPLE TRANSPORTABLE CARBOHYDRATES

Endurance activities > 2.5 hours

Aim for 90 g/h, use multiple transporters

The CHO source should be a mix of glucose and fructose in a ratio of roughly 2:1.

60 g/h of glucose (to saturate the SGLT1 transporters) and 30 g/h of additional fructose for oxidation.

SPORTS NUTRITION PRODUCTS

Common Sugars in Sports Nutrition Products

Dietary Sugar Source		After digestion:
Glucose	>	Glucose
Sucrose	>	Glucose + Fructose
Maltodextrin	>	Glucose
High Fructose Corn Syrup	>	Glucose + Fructose
Organic Cane Sugar, Honey, Molasses, Agave nectar, Fruit juice concentrate	>	Glucose + Fructose

SUGAR

SUGAR

Sugar Gets a Bad Rap

Sugar is often demonized and called "toxic"

Many quickly oxidized carbohydrates are sugars

For athletes, it's important to differentiate the need for a *functional* CHO (sugar) *during* exercise due to fast absorption and oxidation – it won't provide energy if it's sitting in the gut causing GI upset!

ALL-DAY CARBOHYDRATE INTAKE

For sports nutrition needs (pre/during/post exercise) the focus should be on quickly oxidized CHO.

Throughout the rest of the day, athletes should focus on nutrient-rich sources regardless of oxidation rate, including *fruits*, *vegetables*, *whole grains and legumes*.

25-30 g/d = recommended fiber intake from food.

ARTIFICAL SWEETENERS

KEY TAKEAWAYS

- ✓ Carbohydrates are the primary fuel for muscle contraction
- ✓ Intake during exercise can help improve performance
- ✓ The chemical classification (simple/complex) does not reflect the physiologic response in the body
- During exercise, consume mostly "fast" carbohydrates – those that are quickly oxidized
- ✓ Multiple transportable carbohydrates

www.GSSIweb.org