
KEY POINTS

• Focus on wearable measurements under most circumstances, as they are directly captured by the wearable's sensors, while estimates are 
attempts to derive something that cannot be measured with the sensors available on the wearable device. Recognize that both measurements 
and estimates can have larger errors in certain contexts, as when there is movement. 

• Focus on wearable physiological responses as opposed to made-up scores combining physiology and behavior. The emphasis should be on the 
body's physiological response rather than penalizing scores for changes in behavior or external factors. Behavior and external factors remain key 
as context. 

• There is no objective quantification or reference system for many made-up scores. There's no objective way to quantify metrics like sleep quality, 
readiness, recovery or stress, and wearables may oversimplify physiological responses, lacking necessary context. Be skeptical about these. 

• Start with a plan: Before interpreting wearable data, establish a plan, and use measurements (e.g., resting physiology) to capture responses 
to the plan, potentially making adjustments. Relying solely on made-up scores may otherwise lead to a reactive approach, responding to acute 
changes without a long-term focus.
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INTRODUCTION
The wearables market is increasing day by day. Millions of devices 
are currently used by athletes as well as by the general population to 
track various metrics typically concerning sleep, physical activity and 
recovery. In this context, it is frequently observed that individuals either 
wholeheartedly embrace a wearable device or dismiss it entirely due to, for 
example, an actual or perceived inaccuracy in a provided metric. On one 
side, we might have sponsored athletes and somewhat over-enthusiast 
consumers, while on the other side, skeptical coaches and/or scientists.

Regrettably, a more nuanced approach is necessary when it comes 
to these devices and their utilization. In this Sports Science Exchange 
(SSE) article, the aim is to establish a framework that can enable the 
reader to derive more meaningful insights from the data, focusing on 
the parameters and situations that are underpinned by more solid 
scientific evidence. There is significant value in utilizing these devices 
for heightened awareness and actionable insights, but we must move 
beyond the simplistic viewpoints mentioned above.

To start with, it is crucial to distinguish the parameters provided by a 
wearable device into what exactly is being measured (and when) and 
what is only being estimated (and how). Once these distinctions are 
grasped, we can allocate our time and energy to aspects that are likely 
more dependable and beneficial.

PROPOSED FRAMEWORK
A wearable device typically provides various metrics, such as heart 
rate (Nelson et al., 2020), heart rate variability (Georgiou et al., 2018), 
temperature (Maijala et al., 2019), oxygen saturation (SPO2, Spaccarotella 
et al., 2022), calories burned (Fuller et al., 2020), stress level, readiness 
or recovery scores (Ibrahim et al., 2024), sleep stages (Lee et al., 2018), 
sleep quality scores (de Zambotti et al., 2023) and more.

A crucial aspect to comprehend is that these metrics are not uniformly 
derived, which leads to important implications for their accuracy. 
This distinction is vital because it would be erroneous to assume 
that an inaccuracy in a specific parameter (in a particular context, for 
instance, heart rate during exercise) renders the data inaccurate for 
all other parameters or even for the same parameter under different 
circumstances (e.g. heart rate measured at rest or during sleep).

We need to transcend this line of thinking, as wearables do not operate on 
an all-or-nothing basis. Just because one aspect may be lacking doesn't 
mean the entirety is compromised - it's akin to acknowledging that being 
subpar in one skill doesn't equate to incompetence in every skill.

The challenge lies in the fact that these devices are often marketed as 
excelling in every aspect, lacking transparency regarding signal quality, 
measurement error, estimate error, etc. Consequently, we find ourselves 
undertaking this evaluative task independently, which is no simple feat.

The framework that is proposed groups metrics according to how 
they are derived, the availability of reference devices to evaluate their 
accuracy, as well as the context in which they are acquired, which 
impacts both accuracy and interpretability. The following sections will 
first introduce differences between measurements and estimates (a 
first key distinction), and then provide insights on the importance of 
the context in which we measure. Then, estimates are discussed and 
further subdivided into estimates of known parameters (e.g. estimating 
calories, something we can verify with an indirect calorimeter) 
and estimates of unknown parameters (e.g. estimating “recovery”, 
something that does not have a reference device and is made-up by 
the wearable). Finally, the issue of determining when a change in a 
parameter is meaningful is discussed, and when it is just part of day-
to-day variability - a step essential for practical actionability.  
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MEASUREMENTS VS ESTIMATES
When a parameter is measured, we determine its exact value, accounting 
for a margin of error. Measurements require a sensor designed for the 
task, according to what is an established measurement method for 
that specific parameter. For instance, a wearable might use an optical 
sensor to measure changes in blood volume in the microvascular bed 
of tissue during the cardiac cycle (Lemay et al., 2014), allowing it to 
determine pulse rate under certain conditions.

On the other hand, estimations involve making a guess. Estimations 
vary in complexity, ranging from simple methods (for example, 
determining maximal heart rate based on age, which is based on a 
simple regression model, Cruz-Martínez et al., 2014) to more intricate 
approaches (such as using a machine learning model to estimate sleep 
stages based on heart rate variability, movement, temperature and 
circadian features, Altini & Kinnunen, 2021). It's essential to recognize 
that estimations are fundamentally guesses. To truly measure maximal 
heart rate, a maximal test is necessary, and to accurately measure 
sleep stages, one would need to monitor brain waves, eye movement 
and muscle activity (Rundo & Downey III, 2019), factors not measured 
by most wearables that provide sleep stage data, as they are worn on 
the finger or the wrist.

Differentiating between measurements and estimates is crucial as it 
allows us to discern between data captured directly by the device's 
sensors and data derived from related parameters. This understanding 
helps us focus on what the device can reliably capture and what it is 
attempting to infer.

CONTEXT, ACCURACY AND INTERPRETABILITY  
OF MEASUREMENTS
In the previous sections, a distinction was made between measurements 
and estimates. As measurements are provided by a sensor designed 
for the purpose, they tend to be more accurate than estimates, 
which are guesses based on related parameters. However, even for 
measurements, we need to highlight two other key aspects that become 
important when using the data: context and interpretability.

The context of the measurement will impact both its accuracy and its 
interpretability. In simple terms, when we measure, might impact the 
accuracy and the interpretability of the data. Measurements are not 
flawless; they can have errors, influenced by when they are taken. 
For example, optical technology, like the sensors we typically find in 
wearables to measure pulse rate or its variability, are less accurate 
during movement, which affects signal quality and introduces higher 
error rates (Chow & Yang, 2020; Gillinov et al., 2017; Thomson et al., 
2019; Xie et al., 2018). Evaluating measurements against a reference 
device, like an electrocardiogram or a chest strap, helps verify 
their accuracy in different contexts (Stone et al., 2021). We cannot 
extrapolate from measurements taken in a certain context and assume 
the device will behave similarly in a different one. 

Context matters in the interpretability of measurements as well. 
Physiological parameters, such as heart rate variability (HRV), may 

only be meaningful when measured at specific times. For instance, 
HRV, used to capture the body's stress response, is most accurate 
when measured at rest, away from stressors, typically first thing in 
the morning or continuously during the night. Therefore, the time of 
measurement plays a crucial role in ensuring the collection of meaningful 
data. Measuring outside of these well-defined, specific contexts, would 
not lead to any meaningful use of the data. For example, in the context 
of HRV, the simplest things, like swallowing saliva (Yildiz & Doma, 2018) 
or drinking water (Grasser, 2020; Ragsdale et al., 2019) can create 
artifacts that last between a few minutes to hours. Hence, continuous 
HRV data are not representative of physiological stress the way it would 
be when acquired according to certain protocols (e.g. first thing in the 
morning, before eating, drinking, etc.). 

This last point is key because we can always measure something, and 
wearables do market themselves on their ability to collect continuous 
data, but measurements do not necessarily lead to any useful or 
actionable information unless acquired in certain contexts and following 
certain protocols. We need to be aware of simplistic assumptions often 
made when it comes to wearables (e.g. higher is better for HRV) despite 
common associations between high HRV and poor health outcomes 
(Peyser et al., 2021).

ESTIMATES OF KNOWN AND UNKNOWN PARAMETERS
So far measurements have been covered, and while measurements 
are not perfect, they do provide sensors that are designed for the 
task. When looking at estimates, we often look at parameters that are 
guessed in more or less complex ways, based on other parameters 
that tend to be somewhat associated with the ones we are actually 
interested in. For example, if we are interested in sleep time but are 
not measuring brain waves, we can try to use movement and cardiac 
activity as proxies of sleep. It is easy to understand that for these 
reasons, estimates often carry larger errors (Düking et al., 2020). 
In the realm of estimates provided by wearables, a useful additional 
distinction can be made between estimates of known parameters and 
estimates of unknown parameters.

Estimates of known parameters refer to estimating a parameter that 
could be measured using different technology but is estimated by 
wearables due to practical constraints. Examples include calories and 
sleep stages, estimated from movement data and heart rate. While 
estimates should always be taken for what they are (i.e. guesses), 
estimates of known parameters give us the possibility to determine the 
accuracy of a given estimate by comparing it to a reference system, 
such as polysomnography for sleep stages or indirect calorimetry for 
calories. Reference systems do have their limitations, for example, they 
are often expensive and might lack ecological validity (e.g. measuring 
sleep in a sleep lab using polysomnography) and might be quite 
different from the actual sleep we would get in a different environment 
while not being monitored. If it is not feasible to use a reference 
system due to cost or other constraints, a useful approach could be to 
look for validations in research papers where participants are similar 
to the participants of interest for us (e.g. ourselves, athletes, or the 

Sports Science Exchange (2024) Vol. 37, No. 250, 1- 6

2



population we are interested in studying, de Zambotti et al., 2023). 
Finally, given that wearable companies and the market move faster than 
academia and that it is not feasible to validate every single device and 
algorithm present on the market, nor it is possible to do it promptly, a 
different approach is recommended whenever possible. In particular, 
a simple way to determine if an estimate is valid and reliable is to 
compare multiple devices that provide such an estimate. For example, 
if wearables were able to estimate sleep stages or calories accurately, 
one should get very similar data when comparing multiple sensors, as 
well as ideally, very similar relative changes over time when monitoring 
an individual’s longitudinally. If this is not the case (as found for the 
typical estimated metrics, such as calories, sleep stages, readiness, 
recovery, stress, oxygen saturation (SPO2), etc. - none of them are 
estimated consistently across devices), then this is a strong indication 
that we are currently unable to estimate such parameters with sufficient 
accuracy and reliability.

In concluding this section a few important points about estimates of 
known parameters must be made. It is common to generalize (e.g. 
a device is shown to be accurate in measuring or estimating a given 
parameter) and therefore we tend to believe that such a device will be 
equally accurate at measuring or estimating other parameters. This is 
unfortunately not the case, and we need to remember that just because 
a device is accurate at measuring one parameter (e.g. resting heart 
rate) it does not guarantee accuracy in estimating other parameters 
(e.g. SPO2, Spaccarotella et al., 2022). Secondly, error compounds. 
Estimates build on measurements that might include errors, or on 
other estimates, further compounding errors. For instance, estimating 
sleep stages using heart rate, itself measured with potential artifacts, 
introduces multiple layers of error. 

BEHAVIOR OR RESPONSE?
Estimates of unknown parameters refer to parameters for which we 
do not have a reference system, and that are quite common in today’s 
wearables (e.g. most made-up scores or metrics like readiness and 
recovery scores, sleep quality scores, strain, stress scores, etc.). 
Wearables provide these scores for a simple reason: they track many 
parameters and try to break down that information into something more 
digestible for the consumer, which means generating a single recovery 
or readiness score, or a sleep score. However, while aggregating 
information might give the false impression of providing a more 
complete picture, much of the context is lacking, and mixing physiology 
and behavior leads to a poor understanding of the individual response. 
For example, if a readiness or recovery score is lower, it might be due 
to the physiology being impaired (e.g. a lower HRV) or simply due to an 
assumption that the algorithm has made, based on the user’s behavior 
(e.g. sleeping less time or being more active requires more recovery, 
according to the algorithm, or generic model assumptions, which might 
or might not be the case for the individual in question). Especially in 
sport settings, when wearables are used, we are not interested in blind 
guidance, but we are interested in analyzing the body’s response to a 
given stimulus (training or else). We are not able to do so when using 
estimates of unknown parameters such as readiness, recovery, or 

sleep scores that mix behavior and physiology. Behavior remains key 
as context but hinders interpretation when mixed with physiology in 
a score. Given that estimates of unknown parameters are made up, 
inconsistent between devices, prone to change with software updates, 
have provided no correlation with the parameters they are trying to track 
(such as perceived stress and recovery, Lundstrom et al., 2023) and 
mix behavior and physiology in ways that prevent us to understand how 
the individual is responding to a given stimulus, they should probably 
have no place in the decision-making process. If our physiology is fine, 
it means that our body did not respond poorly to a disruption in sleep, 
for example, and therefore do not need to penalize our score because 
of sleep. All other parameters (sleep, activity, etc.) are inputs and 
become essential as contextual information. This is different from using 
behavioral parameters (also estimated with questionable accuracy) 
directly to determine our ability to perform on a given day which cannot 
be captured by a device that lacks information on essential parts of the 
equation, such as muscle soreness for example.

In conclusion, while wearables provide a wealth of data, critical 
consideration of the nature and reliability of estimates is essential. 
Focusing on measurements offers a more reliable basis for 
understanding the body's responses and making informed decisions. In 
the next section, a simple overview is provided to more effectively use 
data collected by wearables, without relying on estimates of unknown 
parameters (i.e. made-up scores) but relying on meaningful changes in 
physiological measurements.  

SIGNAL VS NOISE AND MEANINGFUL CHANGES
Based on what has been discussed so far, we can start to define how 
to make use of wearables effectively. In particular, we need to start 
with a plan, depending on our goal. For athletes, the plan could simply 
be training periodization towards a certain event. In other contexts, we 
might be interested in a change in body composition, which similarly 
requires a targeted approach. Once we have a plan, the best use of 
wearables data, and where they can help us given the ease of use, 
comfort and accuracy of certain parameters, is to analyze relative 
changes in resting physiological data, to assess individual responses to 
our plan and other life stressors which might get in the way. 

The focus should be on resting measurements given the higher 
accuracy and reliability, and not on estimates, and certainly not on 
estimates of unknown parameters (i.e. the made-up scores), using an 
accurate (validated) wearable. Once we have started collecting data, 
we need to be able to determine which changes in resting physiology 
are meaningful, and could be used to implement changes in training, 
and which variations in physiology are just part of day-to-day variability 
and should not be over-interpreted. To do so, sports science provides 
us with the concept of the smallest worthwhile change (Buchheit, 2014; 
Hopkins, 2000). Simply put, the smallest worthwhile change is what 
we can also call our normal range, or the range of values in which 
we expect the data to fall unless there are meaningful changes in the 
monitored parameter. If we take HRV as an example, a suppression 
below the normal range typically highlights significant stress on the 
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Figure 1: Example of resting physiological data (heart rate variability, HRV), normal range (shaded area) and context (training load and annotations).

body, and a poor physiological response (Altini & Plews, 2021). Only 
under these circumstances do we take action, by modulating training 
intensity for example (Carrasco-Poyatos et al., 2022; Javaloyes et al., 
2019; Kiviniemi et al., 2007; Nuuttila et al., 2017). The normal range 

can be easily computed using historical data from an individual, as for 
example a range established as the mean plus or minus one standard 
deviation using data collected in the past 30-60 days (Figure 1).

PRACTICAL APPLICATION AND TAKEAWAYS
Measurements vs estimates is the first important classification when it 
comes to wearable-derived parameters:

• Focus on measurements under most circumstances, as 
they are directly captured by the wearable's sensors. Heart 
rate and HRV at rest, especially if provided as an average of 
the night or as a spot check measurement first thing in the 
morning, as well as skin temperature at rest, are often the 
only parameters measured accurately by wearables.

• Recognize that measurements can have larger errors in 
certain contexts, as when there is movement. Consider 
the right time for measurements to be meaningful in terms 
of interpretability. More data or continuous data does not 
necessarily mean useful data or that any additional actionable 
information is gathered. 

• Focus on physiological responses: The key question when 
assessing these scores should be whether your behavior 
or physiology triggered a reduced score. The emphasis 
should be on the body's physiological response rather than 
penalizing scores for changes in behavior or external factors.

• No objective quantification: There's no objective way to 
quantify metrics like sleep quality or stress, and wearables 
may oversimplify physiological responses, lacking  
necessary context.

Considerations and recommendations on guidance and actionability:

• Goal Alignment: Consider whether you seek blind guidance 
or aim to understand your body's response to stressors. The 
first can make use of made-up scores, the second should 
rely on physiological changes with respect to an individual’s 
normal range.

• Start with a Plan: Before interpreting wearable data, 
establish a plan, and use measurements (e.g., resting 
physiology) to capture responses to the plan, potentially 
making adjustments. Relying solely on made-up scores may 
otherwise lead to a reactive approach, responding to acute 
changes without a long-term focus.
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SUMMARY
This SSE article advocates for a strategic approach to using wearables, 
emphasizing the importance of focusing on parameters that can lead 
to meaningful physiological insights, especially the ones measured 
at rest by sensors that were designed for the job, as opposed to the 
ones that are estimated from somewhat related variables. Despite the 
convenience of continuous data collection, wearables often overlook 
essential elements and contextual information, thereby challenging 
the notion that they offer a holistic view. A more intentional use 
is recommended, as opposed to the passive data collection often 
promoted. No amount of data can make up for poor protocols. 

Due to issues with measurements during activity and the compounding 
of errors in many estimates, it is recommended to focus one’s time 
and energy on the few parameters that can be actually measured. The 
suggestion is to minimize error by looking at resting data and maximize 
physiological meaning by examining night data or data collected 
first thing in the morning. The more we move away from resting 
measurements, the more noise, error and lack of context is introduced.

Users are encouraged to critically evaluate the capabilities of their 
wearables by asking questions such as whether the parameter of 
interest is actually measured or estimated and what the degree of error 
is. It is important to emphasize the importance of seeking validation 
papers for each parameter you are interested in and checking for 
consistency when using multiple wearables for the same parameter, 
especially when looking at estimates. 

Aggregating information from wearables may create a false expectation 
of increased insight, whereas, in reality, it may only dilute the true 
understanding of the data. Taking a step back and relying on actual 
physiological data, observing deviations from the normal range and 
contextualizing this information with subjective reports and training data 
separately, will lead to greater insight. This approach aims to provide a 
balanced understanding of the device's capabilities without being overly 
influenced by hype or dismissing potential utility.

The views expressed are those of the author and do not necessarily reflect the position or 
policy of PepsiCo, Inc.
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